¿Cuáles son los mejores tutoriales en línea para aprender el ecosistema de Spark y Hadoop como Hive, HBase, Sqoop, Flume, Oozie, Kafka?

Así que quieres aprender Hadoop como paquete, ¿verdad?

En línea hay varios cursos, puedo sugerirle Best One, que cubre la mayoría de las tecnologías de Hadoop.

The Ultimate Hands-On Hadoop – ¡Domina tus datos masivos!

Hadoop, MapReduce, HDFS, Spark, Pig, Hive, HBase, MongoDB, Cassandra, Flume – ¡la lista continúa! Más de 25 tecnologías.

Aprenda y domine las tecnologías de big data más populares en este curso integral, impartido por un ex ingeniero y gerente senior de Amazon y IMDb . Iremos más allá del propio Hadoop y nos sumergiremos en todo tipo de sistemas distribuidos con los que deba integrarse.

  • Instale y trabaje con una instalación real de Hadoop en su escritorio con Hortonworks y la interfaz de usuario de Ambari
  • Administre big data en un cluster con HDFS y MapReduce
  • Escribir programas para analizar datos en Hadoop con Pig and Spark
  • Almacene y consulte sus datos con Sqoop , Hive , MySQL , HBase , Cassandra , MongoDB , Drill , Phoenix y Presto
  • Diseñar sistemas del mundo real utilizando el ecosistema de Hadoop.
  • Aprenda cómo se maneja su grupo con YARN , Mesos , Zookeeper , Oozie , Zeppelin y Hue
  • Maneja los datos de transmisión en tiempo real con Kafka , Flume , Spark Streaming , Flink y Storm

Comprender Hadoop es una habilidad muy valiosa para cualquier persona que trabaje en compañías con grandes cantidades de datos.

Casi todas las grandes empresas en las que desea trabajar utilizan Hadoop de alguna manera, incluidos Amazon, Ebay, Facebook, Google, LinkedIn, IBM, Spotify, Twitter y Yahoo! Y no son solo las empresas de tecnología las que necesitan a Hadoop; incluso el New York Times utiliza Hadoop para procesar imágenes.

Este curso es exhaustivo y abarca más de 25 tecnologías diferentes en más de 14 horas de conferencias en video . Está lleno de actividades y ejercicios prácticos, por lo que obtienes una experiencia real en el uso de Hadoop, no es solo teoría.

Encontrará una variedad de actividades en este curso para personas en todos los niveles. Si usted es un administrador de proyectos que solo quiere aprender las palabras de moda, existen UI web para muchas de las actividades en el curso que no requieren conocimientos de programación. Si te sientes cómodo con las líneas de comando, también te mostraremos cómo trabajar con ellas. Y si eres programador, te desafiaré con la escritura de scripts reales en un sistema Hadoop usando Scala, Pig Latin y Python .

Saldrá de este curso con una comprensión profunda y real de Hadoop y sus sistemas distribuidos asociados, y podrá aplicar Hadoop a problemas del mundo real.

Alternativa: –

  • Aprenda Big Data: La clase maestra del ecosistema de Hadoop
  • Master Big Data y Hadoop paso a paso desde cero

Edureka proporciona una buena lista de videos Tutorial de Hadoop. Le recomendaría que lea esta lista de reproducción de videos del tutorial de Hadoop , así como la serie de blogs del Tutorial de Hadoop . Su aprendizaje debe estar alineado con la certificación Hadoop .

Primero entienda Big Data y los desafíos asociados con Big Data. Entonces, puedes entender cómo Hadoop surgió como una solución a esos problemas de Big Data. Este blog de What is Hadoop y Hadoop Tuorial te lo presentará.

Entonces debe comprender cómo funciona la arquitectura de Hadoop con respecto a HDFS, YARN y MapReduce.

Más adelante, debe instalar Hadoop en su sistema para que pueda comenzar a trabajar con Hadoop. Esto le ayudará a comprender los aspectos prácticos en detalle.

Más adelante, realice una inmersión profunda en el ecosistema Hadoop y aprenda varias herramientas dentro del ecosistema Hadoop con sus funcionalidades. Por lo tanto, aprenderá cómo crear una solución personalizada de acuerdo con sus requisitos.

Vamos a entender en breve:

¿Qué es Big Data?

Big Data es un término usado para una colección de conjuntos de datos que son grandes y complejos, que es difícil de almacenar y procesar utilizando las herramientas de administración de bases de datos disponibles o las aplicaciones tradicionales de procesamiento de datos. El desafío incluye capturar, curar, almacenar, buscar, compartir, transferir, analizar y visualizar estos datos.

Se caracteriza por 5 V’s.

VOLUMEN: El volumen se refiere a la ‘cantidad de datos’, que crece día a día a un ritmo muy rápido.

VELOCIDAD: la velocidad se define como el ritmo en el que las diferentes fuentes generan los datos todos los días. Este flujo de datos es masivo y continuo.

VARIEDAD: Como hay muchas fuentes que contribuyen a Big Data, el tipo de datos que generan es diferente. Puede ser estructurado, semiestructurado o no estructurado.

VALOR: Es bueno tener acceso a big data, pero a menos que podamos convertirlo en valor, es inútil. Encuentre ideas en los datos y saque provecho de ellos.

VERACIDAD: Veracidad se refiere a los datos en duda o incertidumbre de los datos disponibles debido a la inconsistencia y falta de datos de los datos.

¿Qué es Hadoop y su arquitectura?

Los componentes principales de HDFS son NameNode y DataNode .

NombreNodo

Es el demonio maestro que mantiene.

y gestiona los DataNodes (nodos esclavos). Registra los metadatos de todos los archivos almacenados en el clúster, por ejemplo, la ubicación de los bloques almacenados, el tamaño de los archivos, los permisos, la jerarquía, etc. Registra todos y cada uno de los cambios que se producen en los metadatos del sistema de archivos.

Por ejemplo, si un archivo se elimina en HDFS, el NameNode lo grabará inmediatamente en el EditLog. Regularmente recibe un informe de Heartbeat y de bloque de todos los DataNodes en el clúster para asegurar que los DataNodes estén activos. Mantiene un registro de todos los bloques en HDFS y en qué nodos se almacenan estos bloques.

DataNode

Estos son demonios esclavos que se ejecutan en cada máquina esclava. Los datos reales se almacenan en DataNodes. Son responsables de atender las solicitudes de lectura y escritura de los clientes. También son responsables de crear bloques, eliminar bloques y replicarlos de acuerdo con las decisiones tomadas por NameNode.

Para el procesamiento, utilizamos YARN (Yet Another Resource Negotiator). Los componentes de YARN son ResourceManager y NodeManager .

Administrador de recursos

Es un componente de nivel de clúster (uno para cada clúster) y se ejecuta en la máquina maestra. Administra los recursos y programa las aplicaciones que se ejecutan sobre YARN.

NodeManager

Es un componente de nivel de nodo (uno en cada nodo) y se ejecuta en cada máquina esclava. Es responsable de administrar los contenedores y monitorear la utilización de los recursos en cada contenedor. También realiza un seguimiento del estado del nodo y la gestión de registro. Se comunica continuamente con ResourceManager para mantenerse actualizado.

Por lo tanto, puede realizar un procesamiento paralelo en HDFS utilizando MapReduce.

Mapa reducido

Es el componente central del procesamiento en un ecosistema de Hadoop, ya que proporciona la lógica de procesamiento. En otras palabras, MapReduce es un marco de software que ayuda a escribir aplicaciones que procesan grandes conjuntos de datos utilizando algoritmos distribuidos y paralelos dentro del entorno de Hadoop. En un programa MapReduce, Map () y Reduce () son dos funciones. La función Map realiza acciones como filtrar, agrupar y clasificar. Mientras tanto, reduce los agregados de funciones y resume el resultado producido por la función map.El resultado generado por la función Map es un par de valores clave (K, V) que actúa como entrada para la función Reducir.

Puede pasar por este video para comprender Hadoop y su arquitectura en detalle.

Instale Hadoop Single Node y Multi Node Cluster

Luego puede ir a través de este blog de Hadoop Ecosystem para aprender Hadoop Ecosystem en detalle.

También puede ver este video tutorial de Hadoop Ecosystem.

Cerdo

PIG tiene dos partes: Pig Latin , the language y the pig runtime, para el entorno de ejecución. Puedes entenderlo mejor como Java y JVM. Es compatible con la lengua latina de cerdo .

Como todo el mundo no pertenece desde un fondo de programación. Entonces, Apache PIG los alivia. Usted podría ser curioso saber cómo?

Bueno, les contaré un dato interesante:

10 linea de cerdo latino = aprox. 200 líneas de código Java de Map-Reduce

Pero no se sorprenda cuando digo que en el extremo posterior del trabajo de Pig, se ejecuta un trabajo de reducción de mapas. El compilador convierte internamente pig latin a MapReduce. Produce un conjunto secuencial de trabajos de MapReduce, y eso es una abstracción (que funciona como una caja negra). PIG fue desarrollado inicialmente por Yahoo. Le brinda una plataforma para generar flujo de datos para ETL (Extraer, Transformar y Cargar), procesando y analizando grandes conjuntos de datos.

Colmena

Facebook creó HIVE para las personas que dominan SQL. Por lo tanto, HIVE los hace sentir como en casa mientras trabajan en un ecosistema de Hadoop. Básicamente, HIVE es un componente de almacenamiento de datos que realiza la lectura, escritura y administración de grandes conjuntos de datos en un entorno distribuido mediante una interfaz similar a la de SQL.

HIVE + SQL = HQL

El lenguaje de consulta de Hive se llama Hive Query Language (HQL), que es muy similar a SQL. La colmena es altamente escalable. Como, puede servir tanto para propósitos, es decir, procesamiento de grandes conjuntos de datos (es decir, procesamiento de consultas por lotes) como procesamiento en tiempo real (es decir, procesamiento de consultas interactivo). Hive se convierte internamente en programas de MapReduce.

Es compatible con todos los tipos de datos primitivos de SQL. Puede usar funciones predefinidas o escribir funciones personalizadas definidas por el usuario (UDF) también para satisfacer sus necesidades específicas.

Puede almacenar datos en HBase en función de sus necesidades.

HBase

HBase es una base de datos distribuida de fuente abierta, no relacional. En otras palabras, es una base de datos NoSQL. Es compatible con todo tipo de datos y, por eso, es capaz de manejar cualquier cosa dentro de un ecosistema de Hadoop. Se basa en el modelo BigTable de Google, que es un sistema de almacenamiento distribuido diseñado para hacer frente a grandes conjuntos de datos.

El HBase fue diseñado para ejecutarse sobre HDFS y proporciona capacidades similares a BigTable. Nos brinda una forma tolerante de fallas de almacenar datos dispersos, que es común en la mayoría de los casos de uso de Big Data. El HBase está escrito en Java, mientras que las aplicaciones HBase se pueden escribir en REST, Avro y Thrift API.

Para una mejor comprensión, tomemos un ejemplo. Tiene miles de millones de correos electrónicos de clientes y necesita averiguar la cantidad de clientes que han utilizado la palabra queja en sus correos electrónicos. La solicitud debe procesarse rápidamente (es decir, en tiempo real). Entonces, aquí estamos manejando un gran conjunto de datos mientras recuperamos una pequeña cantidad de datos. Para resolver este tipo de problemas, se diseñó HBase.

Edureka proporciona una buena lista de videos Tutorial de Hadoop. Le recomendaría que lea esta lista de reproducción de videos del tutorial de Hadoop , así como la serie de blogs del Tutorial de Hadoop . Su aprendizaje debe estar alineado con la certificación Hadoop .

Hablaré con los recursos de aprendizaje de Spark, ya que otros ya te dieron enlaces a otros proyectos.

  • https://docs.databricks.com
  • Documentación Spark
  • Cómo empezar con Apache Spark
  • Aprende Apache Spark en 7 pasos
  • La guía de Data Scientist para Apache Spark ™
  • Guía de un ingeniero de datos para Apache Spark ™
  • Dominando el Apache Spark 2.0

Aclamaciones

Jules

He buscado mucho para encontrar el mejor instituto de capacitación para aprender Big Data. De hecho, también me inscribí en uno de los reputados programas de capacitación en línea, asumiendo que me expondré al trabajo en proyectos, pero en todas partes solo aprendo teoría y casos de uso no proyecto de trabajo.

Recomiendo encarecidamente el programa de maestría de Big Data Architect de NPN Training, donde aprenderá en profundidad sobre tecnologías de Big Data como Hadoop + Apache Storm + Apache Spark con Scala + Kafka + MongoDB y Cassandra con formación práctica completa.

Recomiendo NPN Training por las siguientes razones.

  1. Las clases son prácticas completas que dan confianza sobre los temas.
  2. Tienen un excelente E-Learning donde tienes muchas tareas, preguntas de entrevista, estudios de casos, trabajo de proyectos y muchos más. Personalmente me gusta su excelente Portal de Aprendizaje.
  3. Lo mejor de todo es que ofrecen un proyecto en tiempo real que nunca he visto en ninguna otra oferta de instituto.
  4. El curso incluye la prueba de concepto (POC) estándar de la industria, que nos da confianza para asistir a la entrevista.
  5. El curso incluye capacitación en certificación Cloudera (CCA175) que es un gran punto a favor,

Compartiendo algunos recursos de muestra para decirle la calidad.

  • [CCA175] – Sqoop 01.pdf
  • [CCA175] – Bucketing – 01.pdf

SI ERES EN SERIO ACERCA DE OBTENER UN TRABAJO EN GRANDES DATOS ENTONCES, EL ENTRENAMIENTO DE NPN ES EL MEJOR LUGAR PARA UNIRSE

En CloudxLab.com, ofrecemos muchos tutoriales gratuitos (incluido Linux), en la página de inicio, desplácese hasta la sección “Comenzar a aprender ahora”.

El mejor recurso es sorprendentemente YouTube.